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Abstract. We present a model for introducing dynamics into a space–time geometry. This space–
time structure is constructed from aC∗-algebra defined in terms of the generators of an irreducible
unitary representation of a finite-dimensional Lie algebraG. This algebra is included as a subalgebra
in a bigger algebraF , the generators of which mix the representations ofG in a way that relates
different space–times and creates the dynamics. This construction can be considered eventually as
a model for two-dimensional quantum gravity.

A C∗-algebra constructed by means of the generators of a finite-dimensional Lie algebraG is
employed to construct an appropriate space–time geometry structure strictly from symmetry
grounds. Moreover, a notion of dynamics (in the sense specified below) can be introduced into
the scheme by consideringG as inserted in a bigger algebraF which encloses the physical
content of the model. The method somewhat parallels that of Madore in constructing thefuzzy
sphere[1]. While he employed the generators in irreducible unitary representations ofsu(2),
we make use here of the algebra ofsl(2, R) to create what might be calledfuzzy hyperboloids
(there are different ways of introducing non-commutativity in hyperboloids, thus leading to
different ‘fuzzy hyperboloids’; we shall give a precise meaning tooursbelow).

For the sake of clarity and to avoid redundancies, let us postpone the detailed analysis of the
concreteC∗-algebra of interest until we have chosen a specific model in which our statements
acquire a completely defined meaning. For the moment let us accept that a geometry notion
(a hyperboloid) can be related to each particular irreducible representation ofG.

To introduce dynamics into this context, we consider a bigger algebraF with a central
extension structure. This algebra containssl(2, R) as a subalgebra singularized by algebra
(pseudo-)cohomology criteria:sl(2, R) is in the kernel of the cocycle. Generators which give
a central term in their commutators are dynamical and form conjugated pairs, while those in
the kernel of the cocycle are the kinematical ones (this can be explicitly shown through the
construction of a symplectic form). Then, we construct a unitary, irreducible representation of
F . Assuming complete reducibility of the representation undersl(2, R), we find a collection
of sl(2, R) irreducible, unitary representations, each defining a space–time geometry, via the
sl(2, R) generators. The action of the rest of the generators inF mix the differentsl(2, R)
representations, defining dynamics in the ensemble of thehyperboloids.

Let us make the foregoing considerations more specific. For two-dimensional quantum
gravity motivations [2–4], we chooseF to be the Virasoro algebra:

[Ln,Lm] = (n−m)Ln+m + 1
12(cn

3− c′n)δn,−m (1)
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wherec is the true extension parameter andc′ is a redefinition ofL0 (pseudo-cohomology),
which must be taken into account in order to fully explore the dynamical content of the
algebra [5] (the standard expression in the literature for (1) usesc andh instead ofc andc′,
whereh = c−c′

24 ; parameters(c, c′) are better suited for our discussion).
Then, a highest-weight representation of the Virasoro algebra,H(c,c′), is constructed. The

unitarity, irreducibility [6–10] and the presence ofsl(2, R) in the kernel of the cocycle (i.e.
sl(2;R) is kinematical) are automatically guaranteed with the imposition ofc = c′ andc > 1.
This sl(2, R) is generated by〈L1, L0, L−1〉.

The representationH(c,c) is accomplished by imposingLn|0〉 = 0 (for n > −1, i.e.
annihilation operators), and the states have the form

Ln1 . . . Lnj |0〉 (n1, . . . , nj 6 2, i.e. creation operators). (2)

To consider the reduction of the representation under the kinematical subalgebrasl(2, R),
we look for states|N, 0〉, satisfyingL1|N, 0〉 = 0, thus being highest-weight vectors for
sl(2, R). It can be shown [11] that each of these vectors must belong to a definite Virasoro
level (i.e. they must beL0-eigenvectors). Using this fact, and denoting asD(N) the dimension
of the Virasoro levelN , we find(D(N)−D(N−1)) highest-weight vectors in the Virasoro levelN

(we need only notice that the operatorL1 restricted to LevelN with values in Level(N−1) is an
epimorphism, and dim(LevelN) = dim(KerL1) + dim(ImL1)). An sl(2, R) representation
R(N), of Casimir valueN(N − 1), is reached by the successive action ofL−1 on each of the
previously found vectors|N, 0〉: |N, n〉 = (L−1)

n|N, 0〉. Furthermore, the differentsl(2, R)
representations are orthogonal (with the scalar product induced from the Virasoro algebra).
The representation of the Virasoro algebra is thus completely reduced:

H(c,c) =
⊕

(D(N) −D(N−1))R(N). (3)

Note that the representationR(N) is degenerated and its weight(D(N)−D(N−1)) increases
with N .

As stated above, the space–time is reconstructed from aC∗-algebra, and in the search of it
we follow the spirit of Madore [1] in the realization of the ‘fuzzy sphere’, but with a different
objective which results in a different construction.

The aim in [1] was to construct a non-commutative geometry for the sphere in such a
way that the classical geometry is recovered in a certain limit. This was achieved through
the construction of a succession ofC∗-algebras the limit of which is the algebraC(S2) of
complex-valued smooth functions on the sphere.

The explicit sphere was defined by

gabx
axb = r2 (r a fixed radius) (4)

andgab the Killing metric.
To implement thenth element of the succession ofC∗-algebras, Madore defined

‘coordinates’ from the generatorsJ an of an irreducible representation of dimensionn of su(2):

xan = knJ an (wherekn is a constant with appropriate dimensions). (5)

When polynomials were considered in these non-commutative coordinates of order up ton−1,
with the Casimir constraint (4), an algebra isomorphic toMn (n× n matrices) resulted. This
non-commutativeC∗ algebraMn was then used to construct a matrix geometry which in the
limit n→∞ goes to the standard geometry on the sphere of radiusr.

Geometry becomes fuzzy in this process. For each matrix geometryMn, points are
replaced by states of then-dimensionalsu(2) representation considered. We can prove
that k → 0 in the limit n → ∞, and thus coordinates become commutative, allowing the
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characterization of a point by the use of two coordinates (recovering the standard notion of a
point).

In our case, the starting algebra issl(2, R) instead ofsu(2), so thathyperboloidssubstitute
spheres when the Casimir constraint is imposed.

C∗-algebras are again built from the representations of our Lie algebra (and thus we
are in the spirit of Madore), but now we are not trying to approximate any previous classical
geometry (true hyperboloids of ‘radii’r), and thus a succession of representations of the algebra
for implementing such an approximation is not required. In our case, there is no arbitrariness
in thesl(2, R) representations we must consider. They are specific ones and are given by the
reduction of theH(c,c) representation. Eachsl(2, R) representation,R(N)i (i for degenerate
representations), will generate a (different) space–time geometry.

To construct theC∗-algebras, we first define the coordinate variables from the generators
of sl(2, R). Generators in theN th sl(2, R) representation are multiplied by a dimensional
constantk(N) in order to get appropriate space–time coordinates:

x
(N)
i = k(N)L(N)i i = −1, 0, 1

where L
(N)
i = Li |N th sl(2, R) representation.

(6)

We impose the condition that all thehyperboloidsderived from the differentsl(2, R)
representations in the Virasoro representation have the sameradius,R, and this fixes the value of
the constantsk(N). The way the radius is implemented in ansl(2, R) irreducible representation
is, again, via the value of the Casimir on it (in fact, we have imposed irreducibility on these
representations in order to have a well-defined value of the Casimir):

−R2 = gjkx(N)j x
(N)
k = k(N)2N(N − 1) (7)

wheregjk is thesl(2, R) Killing metric (note the conditionk
(N)2

|k(N)2| = −1, i.e.k(N) is a purely

imaginary number).
Thus, we finally have

R2 = −k(N)2N(N − 1)

k(N) = i
R√

N(N − 1)
.

(8)

This is the way space–time variables are defined. To implement theC∗-algebra, we do not
restrict ourselves to polynomials up to a certain order (we are not trying to define a sequence
of space–times), but rather, we consider the entire enveloping algebra of thesex

(N)
i , modulus

the ideal generated by the Casimir (radius) constraint. Thus,

C∗-algebra= Env(〈x(i)−1, x
(i)
0 , x

(i)
1 〉)/Radius

Radius= −gjkx(N)j x
(N)
k = R2.

(9)

As can be seen from commutators among the space–time coordinates ([x
(N)
i ,x(N)j ] =

k(N)Ckij x
(N)
k ), this is a non-commutativeC∗-algebra leading to a non-commutative geometry.

Points are again replaced by states in the representation ofsl(2, R), and thus we have indeed
fuzzy hyperboloids. For a better understanding of these ‘fuzzy’ points, it is useful to glance at
the indetermination relations, under which space–time is divided into cells:

1x
(N)
i 1x

(N)
j > |k(N)|2 = R2

√
N(N − 1)

. (10)

Different fuzzy hyperboloids of the same radiusR are simultaneously found inside the Virasoro
representation. These are distinguished by point density, which grows with the value ofN , as



L506 Letter to the Editor

can be seen from (10). We note that for largeR values and very smallN , the size of the cells
is comparable to that of the hyperboloid. In contrast, for a fixedR, we can find values ofN as
large as we wish, makingk(N)→ 0, so that cells tend to points and the space–time coordinates
become commutative,recoveringthe classical geometry.

Our model for space–time is not simply one of these hyperboloids, but the whole ensemble
of them (they can be seen as different copies of the same hyperboloid, with equalR, but with
different degrees offuzziness, for differentN ). We understand ‘point’ to mean a normalized
state in the Virasoro Hilbert spaceH(c,c). Taking advantage of the complete reduction ofH(c,c)
undersl(2, R), this point can be written as a linear superposition of normalized vectors over
thesl(2, R) representations. Each of thesl(2, R) states is interpreted as a ‘point’ in a concrete
fuzzy hyperboloid, and thus the original point is spread over different hyperboloids. Indeed, it
makes sense to consider the probability of the ‘point’ to be in a concrete hyperboloid using the
orthogonality of thesl(2, R) representations and developing a standard quantum mechanical
interpretation.

It is not our aim here to give a detailed analysis of thefuzzy hyperboloidgeometry and
its classical (largeN ) limit. We simply mention general features. The role of space–time
diffeomorphisms is played by automorphisms of theC∗-algebra. Vector fields are derivations
of this algebra; that is, linear mappings that satisfy the Leibnitz rule. These fields do not form
a module overC∗, suggesting that we should consider one-forms as the fundamental objects
having a bimodule structure overC∗ [12]. From this, and the Killing metric onsl(2, R), we
could even define a metric and a connection (we do not enter into these details, which are
subtle and deserve a specific study; basically, we aim to identify a properC∗-algebra).

Let us focus now on the way the dynamical degrees of freedom enter the model. Since the
motivation for the use of the Virasoro algebra is two-dimensional gravity, we shall refer to these
modes as ‘gravitational’ ones. Their action on points (normalized states in the Virasoro Hilbert
space) must be such that it preserves the norm (keeping the notion of ‘point’). Therefore, they
must be implemented by unitary transformations generated by Hermitian operators. Starting
from the condition

L+
n = L−n (11)

Hermitian combinations can be defined as
Gn = Ln +L−n n > 2

G−n = i(Ln − L−n) n > 2
(12)

generating the unitary gravity transformations

Un = ei(knGn+k−nG−n). (13)

Gravity transformations do not preserve thesl(2, R) irreducible representations, so that if we
start from a point which completely lies on a space–time of point density given byN , after the
action of gravity this point is transformed into a superposition of points in different space–times
of the same radius (the same Virasoro representation) but differentN (different point density).
This is the essence of the dynamics in the model: the Universe is not one of these space–times,
but the whole ensemble of them, and a point is a superposition of states (eigen-points) spread
over different-density space–times, the coefficients of which give the probability for the point
to be in the corresponding space–time (becausesl(2, R) representations are orthogonal, a fact
which allows the construction of proper orthogonal projectors), thereby defining a probability
distribution of the point. The effect of (gravity) dynamics is that of changing this probability
distribution (quantum motion of the point).

Space–times with different densities have different weights, in such a way that denser ones
(more ‘classical’ ones) are more abundant. Furthermore (as is easily checked given that we
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have a maximum weight representation), the repeated action of gravity generators move the
density distribution toward largerN ; that is, gravity has a definite direction toward classical
space–times. Combining this with the fact that classical space–times are the most abundant
ones (D(N) −D(N−1) increases withN ), we could explain why Universe geometry is almost
classical. If this construction is considered as a model for gravity, it must be remembered
that one is not dealing with Einstein gravity, but rather with a higher-order correction to it
(probably more related to a Wess–Zumino–Witten-like gravity). (Non-commutative) Einstein
gravity should be studied in each of the hyperboloids that appear in the model, by introducing
a metric connection notion with a dynamical content. In two dimensions, classical Einstein
gravity is trivial, and thus we are not concerned with it. However, in higher dimensions this
problem should be faced. We stress that the model is not incompatible with, but rather defines
a framework to study, Einstein gravity.

As regards space–time operators, one must construct Hermitian operators to give an
observable character to the position of a point. Thus,

x(N)u = x(N)1 + x(N)−1

x(N)v = i(x(N)1 − x(N)−1 ).
(14)

In these variables thesl(2, R) Casimir constraint is given by

R2 = xNu
2

+ xNv
2 − xN0

2
. (15)

This expression does not distinguish between anti-de Sitter and de Sitter space–times, which in
two dimensions are topologically identical. In fact, the reconstruction of a geometry from aC∗-
algebra does not provide a metric structure and thus such a distinction should not be expected
at this level. There is freedom in choosing any of these by selecting an appropriate form of the
SL(2, R) Killing metric on the(xNu , x

N
v , x

N
0 ) space, which induces the corresponding metric

on the hyperboloid through (15).
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